|
Dear reader,
Digitalization and the increasing use of data-based methods are opening up far-reaching opportunities for rail transport. From maintenance and capacity planning to the control of infrastructure processes, it is clear that data intelligence has become a key lever for efficiency, safety, and customer satisfaction.
One particularly relevant field is predictive maintenance. With the help of sensor technology and artificial intelligence, the condition of vehicles and systems can be monitored in real time and deviations detected at an early stage. Operators such as Indian Railways and European metro systems are already using predictive maintenance solutions that forecast failures with a high degree of accuracy, thereby avoiding unplanned downtime. In addition to greater safety, this also reduces costs and makes maintenance intervals more efficient. In Germany, projects such as DEFLECTOR and D4M (BTU Cottbus-Senftenberg, Fraunhofer IKTS) are researching the targeted use of sensor technology and AI to make maintenance more predictable and resource-efficient.
Data usage is also opening up new perspectives in the area of capacity planning. Historical passenger numbers, real-time information, and demand forecasts serve as the basis for optimized timetables that improve both punctuality and utilization. The integration of different data sources – from reservation systems to video data – also creates transparency for resource management and operational decisions. However, this requires systematic harmonization of data to ensure a valid basis for decision-making. In addition, new applications are emerging in the field of automated driving: The enableATO project at RailCampus OWL, for example, is investigating how sensor technology, AI, and automated control can be used in rural regions.
Furthermore, data-based analysis enhances safety in rail operations. Sensors measure vibrations, temperature, or brake conditions so that potential hazards can be identified and remedied before they lead to disruptions. AI-supported processes can significantly reduce maintenance costs and measurably increase punctuality. At the same time, data-driven systems also support infrastructure control. Modern train control systems such as CBTC enable denser train sequences with consistent safety through precise position detection, while standardized data formats such as RailML improve interoperability between different IT systems.
However, these developments also come with challenges. Data protection and IT security are essential, especially when processing passengers' personal data. In addition, automation and data-based processes are changing traditional tasks in rail operations, which requires new training measures for employees. The quality and diversity of the data used is also crucial: reliable forecasts and decisions can only be derived from a broad and valid database.
Overall, it is clear that data-driven methods in rail transport have long since moved beyond pilot projects and are already having a noticeable impact on maintenance, planning, and operations. They make an important contribution to greater efficiency, safety, and sustainability, but at the same time require clear framework conditions and accompanying measures. The future viability of rail transport therefore depends not only on technical implementation, but also on responsible integration into organizational, regulatory, and social structures.
Read you next month!
Best regards,
Your RMR-Team |
|
| |
|
Project objectives
D4M investigates how AI-based solutions can improve the planning and control of vehicle maintenance in public transport. The aim is a) to create a data model based on inspection regulations and actual maintenance requirements, b) to develop AI-supported forecasting methods for weekly workshop planning, and c) to develop approaches to support workshop control. Approach
Led by BTU Cottbus-Senftenberg (Chair of Production Management), the project is working with partners such as Fraunhofer IKTS, DB FZI, Zedas GmbH, and CHESCO. It comprises phases for analyzing existing planning processes, setting up a database and data model, developing and testing AI algorithms, and evaluating them under real conditions. A final phase is dedicated to the utilization of the results.
Duration Project duration: July 2024 – June 2027 Project volume: approximately €3.11 million, funding rate around 71.7% by the BMDV. Use of results
The project aims to create a data-based, automatable basic structure for maintenance planning while also making plant control more efficient. The findings are relevant for both Deutsche Bahn and other mobility providers – in particular for improving planning quality, resource utilization, and cost efficiency. | |
|
| |
Project objectives
The project aims to provide real-time information about the current condition of existing vehicles with the highest possible degree of accuracy. Retrofitting with wireless communication sensors will enable predictive condition assessment, allowing for more reliable maintenance planning and increased vehicle availability. Approach
Coordinated by BTU Cottbus-Senftenberg, DEFLECTOR is working in cooperation with Deutsche Bahn, Fraunhofer IKTS, and local partners such as ProFunk, Zedas, and Umlaut SE. The approach includes the collection and processing of historical vehicle and maintenance data, the integration of wireless sensor technology into existing vehicles, and the development of machine learning methods for condition prediction. Demonstrators for optimized maintenance planning are to be implemented as examples.
Duration Project duration: August 2024 – July 2027 Project volume: approximately €3.79 million, funding rate around 69% by the BMDV. Use of results
The project is expected to result in digitized and more efficient maintenance processes with reduced downtime and increased vehicle availability. It promotes both technological innovation through sensor technology and AI and the transferability of the results to other maintenance locations in the rail network. |
|
| |
|
|
|
|
|
|
|
RMR delivers customized data mining and analytics | | At Rail Market Research, we go beyond traditional research. Our dedicated team of experts specializes in customized data mining and analytics, transforming complex rail market data into actionable intelligence. We provide a competitive edge by delivering precise, tailored solutions for the unique challenges of the rail industry. Our services include:
- Customized Data Mining & Analytics: Extract valuable insights from your data to optimize operations, predict trends, and enhance efficiency.
- Market Intelligence & Strategic Reporting: Receive bespoke management reports and market analyses, tailored to your specific needs.
- Benchmark Studies & Performance Analysis: Compare your performance against industry standards and identify areas for improvement.
- Feasibility Studies & Entry Strategies: Make informed decisions about market entry and expansion with our data-backed analyses.
- Predictive Analytics & Forecasting: Anticipate future trends and optimize resource allocation with our advanced predictive models.
|
Contact Now |
|
|
|
| |
Railway Forum Berlin, Germany |
|
| | |
|
|
| |
EXPO Ferroviaria Milan, Italy
|
|
| | |
| |
|
|
|
|
Featured Research Projects |
|
|
|
We want to connect researchers and interested parties from industry and business and promote the exchange of research results.
If you are currently working on an exciting research project and would like to present it to a wider audience, please send us an e-mail. |
Reach out now |
|
|
Inside RailMarketResearch |
|
|
|
Receive the latest news on the following topics:
| Trends, news and expert contributions, | upcoming events, | studies |
Subscribe now! |
|
|
|
|